Convergence Analysis of an Inexact Infeasible Interior Point Method for Semidefinite Programming
نویسندگان
چکیده
In this paper we present an extension to SDP of the well known infeasible Interior Point method for linear programming of Kojima, Megiddo and Mizuno (A primal-dual infeasibleinterior-point algorithm for Linear Programming, Math. Progr., 1993). The extension developed here allows the use of inexact search directions; i.e., the linear systems defining the search directions can be solved with an accuracy that increases as the solution is approached. A convergence analysis is carried out and the global convergence of the method is proved.
منابع مشابه
Global convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملA path-following infeasible interior-point algorithm for semidefinite programming
We present a new algorithm obtained by changing the search directions in the algorithm given in [8]. This algorithm is based on a new technique for finding the search direction and the strategy of the central path. At each iteration, we use only the full Nesterov-Todd (NT)step. Moreover, we obtain the currently best known iteration bound for the infeasible interior-point algorithms with full NT...
متن کاملConvergence Analysis of Inexact Infeasible Interior Point Method for Linear Optimization
In this paper we present the convergence analysis of the inexact infeasible path-following (IIPF) interior point algorithm. In this algorithm the preconditioned conjugate gradient method is used to solve the reduced KKT system (the augmented system). The augmented system is preconditioned by using a block triangular matrix. The KKT system is solved approximately. Therefore, it becomes necessary...
متن کاملConvergence Analysis of the Inexact Infeasible Interior-Point Method for Linear Optimization
We present the convergence analysis of the inexact infeasible pathfollowing (IIPF) interior-point algorithm. In this algorithm, the preconditioned conjugate gradient method is used to solve the reduced KKT system (the augmented system). The augmented system is preconditioned by using a block triangular matrix. The KKT system is solved approximately. Therefore, it becomes necessary to study the ...
متن کاملA polynomial-time inexact primal-dual infeasible path-following algorithm for convex quadratic SDP
Convex quadratic semidefinite programming (QSDP) has been widely applied in solving engineering and scientific problems such as nearest correlation problems and nearest Euclidean distance matrix problems. In this paper, we study an inexact primal-dual infeasible path-following algorithm for QSDP problems of the form: minX{12X • Q(X) + C •X : A(X) = b, X 0}, where Q is a self-adjoint positive se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 29 شماره
صفحات -
تاریخ انتشار 2004